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Abstract We study in this paper estimates on the size of the sets of points
which are well approximated by orbits of other points under certain dynamical
systems. We apply the results obtained to the particular case of the dynamical
system generated by inner functions in the unit disk of the complex plane.
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1 Introduction

If a measure preserving transformation T is mixing, then pre-images under T
distribute themselves somehow regularly along the base space. We are inter-
ested in this paper in quantifying this regularity.
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A close analogue and a source of inspiration for this paper is furnished
by Poincaré’s recurrence theorem and certain quantitative refinements due to
Boshernitzan. But the main motivation for this work has been the study of
inner functions as dynamical systems and they provide concrete examples of
applications of our results.

1.1 Quantitative mixing results

Throughout this paper (X, d) will be a metric space endowed with a finite mea-
sure μ over the Borel sets and such that the support of μ is equal to X. As
a normalization we shall assume that μ(X) = 1. Also T : X −→ X will be a
measure preserving transformation, i.e. a measure such that μ(T−1(A)) = μ(A)

for all Borel set A.
The classical recurrence theorem of Poincaré (see for example [10], p 61)

says that

Theorem A (H. Poincaré) If X is separable, then μ-almost every point of X is
recurrent in the sense that

lim inf
n→∞ d(Tn(x), x) = 0 .

Here Tn denotes the nth fold composition Tn = T ◦T ◦ · · · ◦T. It is natural to
ask if the orbit {Tn(x)} of the point x not only comes back to any neighborhood
of x itself as Poincaré’s Theorem asserts, but whether it also visits any neigh-
borhood of a previously chosen point x0 ∈ X. The main aim of this paper is to
obtain results in this direction.

Under the additional hypothesis of ergodicity one can obtain the following
result which parallels Theorem A. We recall that the transformation T is ergodic
if the only T-invariant sets (up to sets of μ-measure zero) are trivial, i.e. they
have zero μ-measure or their complements have zero μ-measure.

Theorem A′ If T : X −→ X is ergodic then, for any x0 ∈ X, we have that

lim inf
n→∞ d(Tn(x), x0) = 0 ,

for μ-almost all x ∈ X.

For the sake of completeness we will include a proof of Theorem A′ in Sect. 2.
Boshernitzan obtained in [3] the following quantitative version of Theorem A.

Theorem B (M. Boshernitzan) If X is separable and the Hausdorff α-measure
Hα is σ -finite on X for some α > 0, then for μ-almost all x ∈ X,

lim inf
n→∞ n1/α d(Tn(x), x) < ∞ .
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Boshernitzan also proved that if Hα(X) = 0, then for μ-almost all x ∈ X,

lim inf
n→∞ n1/α d(Tn(x), x) = 0 (1)

and when the measure μ agrees with Hα for some α > 0, then for μ-almost all
x ∈ X,

lim inf
n→∞ n1/α d(Tn(x), x) ≤ 1 .

Recently, Barreira and Saussol [6] have reformulated the result (1) in terms
of the return time of a point x ∈ X into the ball B(x, r). They have also obtained
a generalization of (1) for subsets of RN in terms of the lower pointwise dimen-
sion of μ at the point x ∈ X instead of the Hausdorff measure of X. We recall
that the lower and upper pointwise dimension at x are defined, respectively, as

dμ(x) = lim inf
r→0

log μ(B(x, r))
log r

and dμ(x) = lim sup
r→0

log μ(B(x, r))
log r

.

Theorem C (L. Barreira and B. Saussol) Let us suppose that X ⊂ RN for some
N ∈ N. Then

lim inf
n→∞ n1/α d(Tn(x), x) = 0 ,

for μ-almost every x ∈ X such that dμ(x) < α.

More recently, some new quantitative recurrence results along these lines
have been obtained by several authors relating various recurrence indicators
with entropy and dimension, see e.g. [2,4,13,21].

In order to obtain a quantitative version of Theorem A′ we will need the
additional hypothesis that T is uniformly mixing at x0 (see Sect. 3 for the defi-
nition).

Theorem 1 Let {rn} be a decreasing sequence of positive numbers tending to
zero as n → ∞. If T is uniformly mixing at a point x0 ∈ X and

∞∑

n=1

μ(B(x0, rn)) = ∞,

then

lim
n→∞

#{i ≤ n : d(Ti(x), x0) ≤ ri }∑n
j=1 μ(B(x0, rj))

= 1, for μ-almost every x ∈ X .

In particular

lim inf
n→∞

d(Tn(x), x0)

rn
≤ 1 , for μ-almost every x ∈ X .
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The notation #A means the number of elements of the set A.
As a complement of this statement observe that if the sequence {rn} goes fast

enough to zero in such a way that

∞∑

n=1

μ(B(x0, rn)) < ∞ ,

then, as a consequence of Borel-Cantelli lemma it is easy to see (see Proposition
1 in Sect. 3) that

lim inf
n→∞

d(Tn(x), x0)

rn
≥ 1 , for μ-almost every x ∈ X . (2)

As a consequence of Theorem 1 we obtain the following result which we can
compare with Theorems B and C.

Corollary 1 If T is uniformly mixing at a point x0 ∈ X and α > dμ(x0), then

lim inf
n→∞ n1/α d(Tn(x), x0) = 0, for μ-almost every x ∈ X .

As a consequence of (2) we also get that if α < dμ(x0), then

lim inf
n→∞ n1/α d(Tn(x), x0) = ∞, for μ-almost every x ∈ X .

1.2 Inner functions

The main motivation of this work has been the study of mixing properties
of inner functions. We recall that the classical Fatou’s Theorem asserts that a
bounded holomorphic function f : D −→ C, from the unit disk D into the
complex plane C, has radial limits almost everywhere. A holomorphic function
f defined on D and with values in D is called an inner function if the radial limits

f ∗(ξ) := lim
r→1− f (rξ) (3)

(which exists for almost every ξ by Fatou’s Theorem) have modulus 1 for almost
every ξ ∈ ∂D. Here and hereafter ∂D will denote the boundary of the unit disk
D. Therefore if f is inner, the radial limits (3) define a mapping f ∗ : ∂D −→ ∂D
up to a set of zero Lebesgue measure. The fact that f is holomorphic implies
the following well known result, see e.g. [20].

Theorem D (Löwner’s lemma) If f : D −→ D is an inner function then f ∗ :
∂D −→ ∂D preserves Lebesgue measure if and only if f (0) = 0.
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Every inner function has a representation of the form

f (z) = eiθ
∏

j

|aj|
aj

z − aj

1 − ajz
exp

(
−

∫

∂D

ξ + z
ξ − z

dν(ξ)

)
,

where {aj} is the sequence of the zeroes of f in D (possibly empty) and ν is a
singular non negative measure in ∂D. The dynamics of an inner function in ∂D
can be very complicated. In fact, f ∗ : ∂D −→ ∂D can be very discontinuous. If
z ∈ ∂D is a singular point of f , i.e. if z is an accumulation point of the sequence
{aj} of zeroes or if z belongs to the support of the singular measure ν, then
f ∗ : ∂D −→ ∂D maps every neighborhood of z onto the whole of ∂D. On the
other hand, if z ∈ ∂D is not a singular point, then f extends holomorphically to
a neighborhood of z.

It is remarkable that, in spite of the fact that f ∗ is only defined up to a set of
measure zero, one can prove results about the behaviour of f ∗ on sets of zero
Lebesgue measure. For example, in [11] (see also [12,19] for extensions of these
results) it was proved that for any Borel subset A of ∂D

capα((f ∗)−1(A)) ≥ capα(A) ,

where capα denotes Riesz α-capacity for 0 < α < 1 and logarithmic capacity
for α = 0. Therefore, it follows that

Dim ((f ∗)−1(A)) ≥ Dim (A) ,

where Dim denotes Hausdorff dimension.
If f is inner with a fixed point in D, but it is not conjugated to a rotation,

Aaronson [1] and Neuwirth [16] proved, independently, that f ∗ is exact with
respect to harmonic measure and therefore mixing and ergodic. In fact, inner
functions are also ergodic with respect to α-capacity [12]. An interesting study
of some dynamical properties of inner functions is contained in the works of
Craizer. In [7] he proves that if f ′ belongs to the Nevanlinna class, then the
measure theoretic entropy of f ∗ is finite and it can be calculated by the formula

h(f ∗) = 1
2π

∫ 2π

0
log |(f ∗)′(x)| dx ,

where (f ∗)′ denotes the angular derivative of f . He also proves that the exten-
sion f ∗ of an inner function with a fixed point in D is equivalent to a generalized
Bernoulli shift, see [8].

The mixing properties of inner functions are even stronger. In this sense
Pommerenke [17] has shown the following

Theorem E (Ch. Pommerenke) Let f : D −→ D be an inner function with
f (0) = 0, but not a rotation. Then, there exists a positive absolute constant K such
that
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∣∣∣∣
m[B ∩ (f ∗)−n(A)]

m(A)
− m(B)

∣∣∣∣ ≤ K e−αn , (4)

for all n ∈ N, for all arcs A, B ⊂ ∂D, where α = max{1/2, |f ′(0)|}.
Here m(·) denotes normalized Lebesgue measure. Notice that once you have

this result for all arcs A, B, one can automatically obtain the same conclusion
for all arcs B and all Borel sets A with m(A) > 0.

The mixing property (4) of inner functions allows us to prove the following
result.

Theorem 2 Let f : D −→ D be an inner function with f (0) = 0, but not a
rotation. Let ξ0 be a point in ∂D and let {rn} be a decreasing sequence of positive
numbers. If

∑∞
n=1 rn = ∞, then

lim
N→∞

#{n ≤ N : d((f ∗)n(ξ), ξ0) < rn}
∑N

n=1 rn
= 1 , for almost every ξ ∈ ∂D .

In particular,

lim inf
n→∞

d((f ∗)n(ξ), ξ0)

rn
≤ 1 , for almost every ξ ∈ ∂D .

Here d denotes the angular distance in ∂D. Observe that in particular we get
that

lim
N→∞

#{n ≤ N : d((f ∗)n(ξ), ξ0) < 1/n}
log N

= 1 , for almost every ξ ∈ ∂D .

As a consequence of (2) one has also that if rn tends fast enough to zero, i.e.
if

∑∞
n=1 rn < ∞, then

lim inf
n→∞

d((f ∗)n(ξ), ξ0)

rn
≥ 1 , for almost every ξ ∈ ∂D .

A stronger result about inner functions with a fixed point p ∈ D will be
obtained in Sect. 4.

The outline of the paper is as follows. In Sect. 2 we will prove Theorem
A’. In Sect. 3 we give the definition of uniform mixing and prove Theorem 1.
Section 4 contains the results about inner functions. Finally, Sect. 5 contains
an application to the transformation in [0, 1] given by x �→ mx (mod 1) where
m ∈ N.

Before closing this introduction we would like to thank the referee for some
useful suggestions.
Added in proof: Kindly, D. Kleinbock has pointed out to us that some related
results to Theorem 1 can be found in [22]. Compare also with [15].
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2 A mixing Poincaré-type Theorem

In this section we will prove Theorem A’, a result which parallels Poincaré
Recurrence Theorem. First of all we begin with a definition.

Definition 1 A dynamical metric system (X, d, A, μ, T) is a dynamical system
with a compatible metric d. In other words, (X, d) is a metric space, A is the
σ -algebra of the Borel sets of (X, d), μ is a probability Borel measure in X such
that supp (μ) = X, and T : X −→ X is a preserving measure transformation in
X, i.e.,

μ(T−1(A)) = μ(A) for all A ∈ A .

Since the intersection of a numerable collection of full measure sets has also
full measure, Theorem A’ can be stated in the following equivalent way:

Theorem A’ Let (X, d, A, μ, T) be an ergodic dynamical metric system. Given a
sequence {xi}∞i=1 ⊂ X, then

lim inf
n→∞ d(Tn(x), xi) = 0 , for i = 1, 2, . . .

for μ-almost all x ∈ X.

Proof It is enough to prove the result for a unique point x0 ∈ X. First of all we
recall that the ergodicity of T implies that if A, B have positive μ-measure then
A ∩ T−k(B) has also positive μ-measure for some k ∈ N (see [24], p 27). Let us
define the sets

Xn = X \
⎛

⎝
∞⋃

j=1

T−j(B(x0, 1/n))

⎞

⎠ .

Notice that

lim inf
m→∞ d(Tm(x), x0) > 0 if and only if x ∈

∞⋃

n=1

Xn .

Moreover, for all k ∈ N

Xn ∩ T−k(
B(x0, 1/n)

) = ∅ .

Since B(x0, 1/n) has positive μ-measure (because we are assuming that X =
supp μ), by ergodicity, we have that μ(Xn) = 0 for all n and so μ(∪Xn) = 0.
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3 Quantitative mixing results

Once again, let (X, d, A, μ, T) be a dynamical metric system. In this section we
study the size of the set

H(x0) = {x ∈ X : d(Tn(x), x0) < rn for infinitely many n}, (5)

where {rn} is a given sequence of positive numbers and x0 is an arbitrary point
in X. Observe that H(x0) also depends on the sequence {rn}. If the sequence rn
is constant, H(x0) is T-invariant, but, in general, this is not the case.

Let us denote Bk = B(x0, rk) and Ak = T−k(Bk). With these notations, we
have that

H(x0) = {x ∈ X : x ∈ An for infinitely many n} =
∞⋂

k=1

∞⋃

n=k

An .

The following result on the size of the set H(x0) is an easy consequence of
the direct part of Borel–Cantelli lemma.

Proposition 1 Let (X, d, A, μ, T) be a dynamical metric system and let {rn} be a
sequence of positive numbers. Let x0 ∈ X,

if
∞∑

n=1

μ(B(x0, rn)) < ∞ then μ(H(x0)) = 0.

Proof Since T preserves measure, we have that μ(Bk) = μ(Ak) for all k ∈ N
and therefore

∞∑

n=1

μ(An) =
∞∑

n=1

μ(Bn) < ∞ .

From Borel–Cantelli lemma it follows that μ(H(x0)) = 0.

Corollary 2 If
∑∞

n=1 μ(B(x0, rn)) < ∞ then

lim inf
n→∞

d(Tn(x), x0)

rn
≥ 1 , for μ-almost every x ∈ X .

We give now a definition that we will need in the sequel.

Definition 2 Let (X, d, A, μ, T) be a dynamical metric system. We will say that
the transformation T is uniformly mixing at the point x0 ∈ X if there exists a
positive decreasing continuous function 	 : [1, ∞) −→ R such that

∫ ∞

1
	(x) dx < ∞ (6)
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and ∣∣∣∣
μ[B1 ∩ T−n(B2)]

μ(B2)
− μ(B1)

∣∣∣∣ ≤ 	(n) , (7)

for all n ∈ N and for all pair of balls B1, B2 centered at x0.

A more precise statement of Theorem 1 is the following:

Theorem 1 Let (X, d, A, μ, T) be a dynamical metric system. Let x0 ∈ X and let
{rn} be a decreasing sequence of positive numbers. Define the set H(x0) by (5). If
T is uniformly mixing at x0 and

∞∑

n=1

μ(B(x0, rn)) = ∞ , then μ(H(x0)) = 1 .

In fact, one can obtain the following quantitative version

lim
n→∞

#{i ≤ n : d(Ti(x), x0) ≤ ri}∑n
j=1 μ(B(x0, rj))

= 1 , for μ-almost every x ∈ X .

In particular

lim inf
n→∞

d(Tn(x), x0)

rn
≤ 1 , for μ-almost every x ∈ X .

Our argument follows the line of proof of strong laws of large numbers with
Paley–Zygmund inequality providing the key estimate. A nice exposition of
this kind of results, in a closely related context, may be found in [14]. The
relevant fact here is that uniform mixing implies that a certain family of sets is
independent in a precise asymptotical sense. The related assumption of quasi-
independence would allow us to prove, following the argument in [23], for
instance, that

μ

[{
x ∈ X : lim sup

n→∞
#{i ≤ n : d(Ti(x), x0) ≤ ri}∑n

j=1 μ(B(x0, rj))
> 0

}]
> 0 .

But, in general, the set above is not T-invariant and therefore one can not
readily conclude that it has full measure.

Lemma (Payley–Zygmund Inequality) Let (X, A, μ) be a probability space and
let Z : X −→ R be a positive random variable. Then, for 0 < λ < 1,

μ[{x ∈ X : Z(x) > λ E(Z)}] ≥ (1 − λ)2 E(Z)2

E(Z2)
.
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Proof We will denote by χA the indicator function of A. From Cauchy-Schwarz
inequality we deduce that

E(Z) = E
(
Z χ{Z≤λE(Z)}

) + E
(
Z χ{Z>λE(Z)}

)

≤ λ E(Z) + E(Z2)1/2μ[Z > λ E(Z)]1/2 ,

and the result follows.

Proof of Theorem 1 Let us denote Bk = B(x0, rk) and Ak = T−k(Bk). Recall
that

H(x0) = {x ∈ X : x ∈ An for infinitely many n}

and that, since T preserves measure, we have that μ(Bk) = μ(Ak) for all k ∈ N.
If j = k + �, � ≥ 0, we have that

μ(Ak ∩ Aj) = μ(T−k(Bk) ∩ T−k(T−�(Bj)))

= μ(T−k(Bk ∩ T−�(Bj)))

= μ(Bk ∩ T−�(Bj)) ,

using again that T preserves the measure μ. But since T is uniformly mixing at
x0 we get from (7) that

μ(Ak ∩ Aj) ≤ μ(Bk) μ(Bj) + 	(�)μ(Bj)

= μ(Ak) μ(Aj) + 	(�)μ(Aj) , (8)

where 	 is the function given in Definition 2.
Let us denote by Zn and Z the counting functions

Zn =
n∑

k=1

χAk
and Z =

∞∑

k=1

χAk
,

where χAk
is the indicator function of Ak. Observe that H(x0) = {x ∈ X :

Z(x) = ∞}. Expanding Z2
n we get

E(Z2
n) = E

[ n∑

k=1

χAk
+

n∑

k,j=1
k �=j

χAk∩Aj

]
=

n∑

k=1

μ(Ak) + 2
n∑

k,j=1
k<j

μ(Ak ∩ Aj)



Quantitative mixing results and inner functions 243

and then using (8) we deduce

E(Z2
n) ≤

n∑

k=1

μ(Ak) + 2
n∑

k,j=1
k<j

μ(Ak) μ(Aj) + 2
n∑

k,j=1
k<j

	(j − k) μ(Aj)

≤ E(Zn) + E(Zn)2 + 2
n∑

k,j=1
k<j

	(j − k) μ(Aj) .

But μ(An) = μ(Bn) decreases as n → ∞ because {rn} is decreasing. Therefore

E(Z2
n) ≤ E(Zn) + E(Zn)2 + 2

n∑

k=1

μ(Ak)

n∑

j=k+1

	(j − k)

≤
(

1 + 2
∞∑

�=1

	(�)
)

E(Zn) + E(Zn)2 . (9)

Notice that
∑∞

�=1 	(�) is finite because of (6). By applying Paley–Zygmund
Lemma we obtain from (9) that

μ[{x ∈ X : Z(x) > λ E(Zn)}] ≥ μ[{x ∈ X : Zn(x) > λ E(Zn)}]
≥ (1 − λ)2 E(Zn)

1 + 2
∑∞

�=1 	(�) + E(Zn)
. (10)

Since

E(Zn) =
n∑

k=1

μ(Ak) =
n∑

k=1

μ(B(x0, rk))

we deduce, from the hypothesis of the theorem, that E(Zn) → ∞ as n → ∞.
Therefore, we get from (10) that

μ[{x ∈ X : Z(x) = ∞}] ≥ (1 − λ)2 , for 0 < λ < 1 .

As a consequence we conclude that H(x0) has full μ-measure.
To prove the quantitative version, let us observe that from (9) it follows that

E[(Zn − E(Zn))2] ≤
(

1 + 2
∞∑

�=1

	(�)

)
E(Zn) .
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Therefore, the random variable Yn = Zn/E(Zn) − 1 = (Zn − E(Zn))/E(Zn)

verifies that

E(Y2
n) ≤ C

E(Zn)
. (11)

Since, by hypothesis, E(Zn) → ∞ as n → ∞ we can define the following
sequence {nk} of natural numbers:

nk := inf{n ∈ N : E(Zn) ≥ k2} .

Then, using (11), we have that

∞∑

k=1

E(Y2
nk

) ≤
∞∑

k=1

C
k2 < ∞

and therefore E
[ ∑∞

k=1 Y2
nk

]
< ∞. Hence

∑∞
k=1 Y2

nk
< ∞ in a subset of X with

full μ-measure. From this fact it follows that Ynk → 0 in that set, or equivalently,

Znk

E(Znk)
→ 1 , μ-almost everywhere, (12)

as k → ∞. Finally, if nk ≤ n < nk+1, we have that

Zn

E(Zn)
≤ Znk+1

E(Znk)
= Znk+1

E(Znk+1)

E(Znk+1)

E(Znk)
≤ Znk+1

E(Znk+1)

(k + 2)2

k2 (13)

and
Zn

E(Zn)
≥ Znk

E(Znk+1)
= Znk

E(Znk)

E(Znk)

E(Znk+1)
≥ Znk

E(Znk)

k2

(k + 2)2 . (14)

As a direct consequence of (12), (13) and (14) we get that

Zn

E(Zn)
→ 1 , μ-almost everywhere

as n → ∞. The quantitative version follows now from the fact that

#{i ≤ n : d(Ti(x), x0) ≤ ri}∑n
j=1 μ(B(x0, rj))

= Zn(x)

E(Zn)
.

The full statement of Corollary 1 is

Corollary 3 Let (X, d, A, μ, T) be a dynamical metric system. For any x0 ∈ X,
we have:
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(i) If α < dμ(x0), then

lim inf
n→∞ n1/α d(Tn(x), x0) = ∞, for μ-almost every x ∈ X .

(ii) If T is uniformly mixing at x0 and α > dμ(x0), then

lim inf
n→∞ n1/α d(Tn(x), x0) = 0, for μ-almost every x ∈ X .

Proof The condition β < dμ(x0) implies that for r small enough

μ(B(x0, r)) ≤ rβ .

Therefore, if we take rn = n−(1+ε)/β , we have that

∑

n

μ(B(x0, rn)) ≤ C
∑

n

rβ
n < ∞ .

Then from Corollary 2 we obtain that

lim inf
n→∞ n(1+ε)/βd(Tn(x), x0) ≥ 1 (15)

for μ-almost every x ∈ X, for all ε > 0 and for all β < dμ(x0).
Now, if α < dμ(x0), then there exists ε > 0 small enough so that also β =

(1 + 2ε)α < dμ(x0). Therefore, using (15) we get that

lim inf
n→∞ n1/αd(Tn(x), x0) = lim inf

n→∞ nε/β n(1+ε)/βd(Tn(x), x0) = ∞ ,

for x in a set of full μ-measure.
To prove part (ii) observe first that the condition β > dμ(x0) implies that for

r small enough

μ(B(x0, r)) ≥ rβ .

If we take rn = n−1/β we have that

∑

n

μ(B(x0, rn)) ≥ C
∑

n

rβ
n = ∞ .

and from Theorem 1 we deduce that, for all β > dμ(x0),

lim inf
n→∞ n1/βd(Tn(x), x0) ≤ 1 (16)

for x in a set of full μ-measure.
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Now, if α > dμ(x0), then there exists ε > 0 small enough so that also β =
(1 − ε)α > dμ(x0). Therefore, using (16) we get that

lim inf
n→∞ n1/α d(Tn(x), x0) = lim inf

n→∞ n−ε/βn1/β d(Tn(x), x0) = 0 ,

for x in a set of full μ-measure. ��
Remark 1 It is easy to see that this kind of results can be generalized to obtain
results about approximation to several points. For example, if T is uniformly
mixing at all the points in a sequence {xi} ⊂ X then, for α > max{dμ(xi) : i =
1, 2, . . . },

lim inf
n→∞ n1/α d(Tn(x), xi) = 0, for i = 1, 2, . . .

for μ-almost every x ∈ X .

4 Inner functions

As we have mentioned in the introduction, we can think of the extension f ∗ of
an inner function with f (0) = 0 as a metrical dynamical system by taking d as
the angular distance in ∂D and μ as the Lebesgue measure. Theorem E tells us
that f ∗ is uniformly mixing at any point ξ0 ∈ ∂D with respect to a function of the
form 	(x) = K e−αx. Therefore, Theorem 2 which we stated in the introduction
is a consequence of Theorem 1.

In the case that the inner function f has a fixed point p ∈ D, then by conjuga-
tion with an appropriate Möbius transformation S we get a new inner function
g = S−1 ◦ f ◦ S with g(0) = 0. By applying Theorem 2 we obtain easily that if∑∞

n=1 rn = ∞ then

lim inf
n→∞

d((f ∗)n(ξ), ξ0)

rn
≤ C(p) , for almost every ξ ∈ ∂D

with C(p) a positive constant. However, more is true because in fact we can put
C(p) = 1 in the above inequality. To see this, let us observe first that an easy
modification of the proof of Theorem D gives that f ∗ preserves the harmonic
measure ωp. We recall that ωp can be defined as the unique probability measure
such that, for all continuous function φ : ∂D −→ R,

∫

∂D
φ dωp = φ̃(p) , (17)

where φ̃ is the unique extension of φ which is continuous in D and harmonic in
D. It follows that if A is an arc in ∂D, then ωp(A) is the value at the point p of
the harmonic function whose radial limits take the value 1 on A and the value
0 on the exterior of A.
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We will see that the dynamical system (∂D, d, B, ωp, f ∗) is also uniformly mix-
ing at any point ξ0 ∈ ∂D with respect to 	(x) = K e−αx. As a consequence we
get the following result.

Theorem 3 Let f : D −→ D be an inner function with a fixed point p ∈ D, but
not an automorphism which is conjugated to a rotation. Let also ξ0 be any point
in ∂D and let {rn} be a decreasing sequence of positive numbers. If

∑∞
n=1 rn = ∞,

then

lim
N→∞

#{n ≤ N : d((f ∗)n(ξ), ξ0) < rn}
∑N

n=1 rn
= 1 , for almost every ξ ∈ ∂D .

In particular,

lim inf
n→∞

d((f ∗)n(ξ), ξ0)

rn
≤ 1 , for almost every ξ ∈ ∂D .

We recall that, by the Denjoy–Wolff theorem [9], for any holomorphic func-
tion f : D −→ D which is not conjugated to a rotation, there exists a point
p ∈ D, the so called Denjoy–Wolff point of f , such that the iterates f n converge
to p uniformly on compact subsets of D. Also, if p ∈ D then f (p) = p and if
p ∈ ∂D then f ∗(p) = p.

Hence, if f is an inner function which is not conjugated to a rotation and does
not have a fixed point p ∈ D then its Denjoy–Wolff point p belongs to ∂D and f n

converges to p uniformly on compact subsets of D. As an example, consider the
singular inner function f (z) = e−(1−z)/(1+z) whose Denjoy-Wolff point is p = 1.
Of course f n → 1 uniformly on compact subsets of D, but it is not difficult to see
that also (f ∗)n → 1 for almost every point in ∂D. Recently Bourdon, Matache
and Shapiro [5] and Poggi-Corradini [18] have proved independently that if f
is inner with a fixed point in p ∈ ∂D, then (f ∗)n can converge to p for almost
every point in ∂D. In fact, see Theorem 4.2 in [5], (f ∗)n → p almost everywhere
in ∂D if and only if

∑
n(1 − |f n(0)|) < ∞.

Proof of Theorem 3 Let S be a Möbius transformation S : D −→ D such that
S(0) = p. It is easy to check that

ωp(A) = m(S−1(A)) , for any Borel set A ⊂ ∂D . (18)

We also have that g = S−1 ◦ f ◦ S is inner and g(0) = 0. If A, B ⊂ ∂D are arcs
then A′ = S−1(A) and B′ = S−1(B) are also arcs in ∂D. By applying Theorem E
to the function g and the arcs A′, B′ we have that there exist constants K, α > 0
such that, for all n ∈ N,

∣∣∣∣
m(B′ ∩ (g∗)−n(A′))

m(A′)
− m(B′)

∣∣∣∣ ≤ K e−αn . (19)
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Since (f ∗)n = S ◦ (g∗)n ◦ S−1, we obtain from (18) and (19) that

∣∣∣∣
ωp(B ∩ (f ∗)−n(A))

ωp(A)
− ωp(B)

∣∣∣∣ ≤ K e−αn ,

for for all n ∈ N. Therefore, f ∗ is uniformly mixing at any point with respect to
ωp and 	(x) = K e−αx. Since ωp and Lebesgue measure have the same null sets
the result follows now from Theorem 1.

We can rewrite our results for the case of inner functions as follows:

Corollary 4 If f is inner with a fixed point p ∈ D, but not an automorphism
which is conjugated to a rotation, then, for any point ξ0 ∈ ∂D, we have:

(i) If α < 1, then

lim inf
n→∞ n1/α d((f ∗)n(ξ), ξ0) = ∞, for almost every ξ ∈ ∂D .

(ii) If α > 1, then

lim inf
n→∞ n1/α d((f ∗)n(ξ), ξ0) = 0, for almost every ξ ∈ ∂D .

(iii) In the “critical exponent" α = 1, we have

lim inf
n→∞ (n log n) d((f ∗)n(ξ), ξ0) ≤ 1, for almost every ξ ∈ ∂D .

Proof Parts (i) and (ii) follow from Theorem 3 reasoning as in Corollary 3. Part
(iii) follows directly from Theorem 3 using the sequence of radii rn = 1/(n log n).

5 An application: the maps x �→ mx (mod 1)

We are going to apply our results to expansions in base m of numbers in the
interval [0, 1]. Let us consider the map T(x) = mx (mod 1) with m ∈ N, m ≥ 2
acting in [0, 1]. If x ∈ (0, 1) then x have a unique representation of the type

x = a1

m
+ a2

m2 + · · · + ak

mk
+ · · · , with ai ∈ N, 0 ≤ i ≤ m − 1,

if we do not permit representations where aj = m − 1 for all j ≥ j0, for some
j0 ∈ N. This is the base m representation of the number x. We will write x as

x = [ a1 a2 · · · ak · · · ] .

Observe that

x = [ a1 a2 · · · ak · · · ] �⇒ T(x) = [ a2 a3 · · · ak · · · ],
i.e. T acts as a shift if we represent the numbers x ∈ [0, 1] in base m.



Quantitative mixing results and inner functions 249

Using our results we obtain the following consequence which tells us, in
particular that almost every point in [0, 1] has arbitrarily long sequences of
consecutive zeroes in its base m representation.

Theorem 4

(i) For almost all x ∈ [0, 1], x = [ a1 a2 · · · ak · · · ], we have that for infinitely
many n,

an+1 = an+2 = · · · = an+ϕ(n) = 0 with ϕ(n) = [logm n].

In fact,

lim
N→∞

#{n ≤ N : an+1 = an+2 = · · · = an+ϕ(n) = 0}
log N

= 1 ,

for almost all x ∈ [0, 1].
(ii) The set of points x ∈ [0, 1], x = [ a1 a2 . . . ak . . . ], such that for infinitely

many n,

an+1 = an+2 = · · · = an+ϕ(n) = 0 with ϕ(n) = n

has zero Lebesgue measure.

Here [x] means the integer part of x. Let us observe that we have chosen the
function ϕ(n) = [logm n] in part (i) in order that

∑∞
n=1 1/mϕ(n) = ∞. Similarly

the election of ϕ(n) = n in part (ii) gives
∑∞

n=1 1/mϕ(n) < ∞.

Proof If x = [ a1 a2 · · · ak · · · ], for any function ϕ : N −→ N, we have that

Tn(x) ≤ 1
mϕ(n)+1

�⇒ an+1 = an+2 = · · · = an+ϕ(n) = 0 ,

and therefore the statement

Tn(x) ≤ 1
mϕ(n)+1

, for infinitely many n,

means that the sequences

an+1 = 0, an+2 = 0, . . . , an+ϕ(n) = 0

appear in the base m representation of x for infinitely many n.
Let us observe also that ([0, 1], deuclidean, B, | · |, T) is a dynamical system

which is isomorphic to (∂D, d, B, | · |, f ) with f the inner function f (z) = zm.
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By taking x0 = 0 ∈ [0, 1], part (i) follows now from Theorem 2 by choosing
rn = 1/m[logm n]+1 and using that if ϕ(n) = [logm n], then

N∑

n=1

1
mϕ(n)+1

� log N , as N → ∞ .

Part (ii) follows from Proposition 1 if we take rn = 1/mn+1.

We have made the reduction to the point x0 = 0 ∈ [0, 1] in order to get a
better understanding of the result. One can prove the same result for any point
x0 in [0, 1], for example, by composing the inner function zm with any rotation.
Thus, the full statement of the above theorem is the following

Theorem 5 Let x0 = [ b1 b2 · · · bk · · · ] be a point in [0, 1). Then,

(i) For almost all x ∈ [0, 1], x = [ a1 a2 · · · ak · · · ], we have that for infinitely
many n,

an+1 = b1 , an+2 = b2 , . . . , an+ϕ(n) = bϕ(n) with ϕ(n) = [logm n].

In fact,

lim
N→∞

#{n ≤ N : an+1 = b1 , an+2 = b2 , . . . , an+ϕ(n) = bϕ(n)}
log N

= 1 ,

for almost all x ∈ [0, 1].
(ii) The set of points x ∈ [0, 1], x = [ a1 a2 · · · ak · · · ], such that for infinitely

many n,

an+1 = b1 , an+2 = b2 , . . . , an+ϕ(n) = bϕ(n) with ϕ(n) = n

has zero Lebesgue measure.
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